Lecture 12:
Mathematical Induction
Part 1 of 2



Okay, let’s kick off our exploration ot
today’s material with some kinetic activity.

L.et’s do the wave!



The Wave

 If done properly, everyone will eventually
end up joining in.

 Why is that? There are two primary
components:

« Someone (me!) started everyone off.

* Once the person before you did the wave,
you did the wave.



Let P be some predicate. The principle of mathematical
induction states that if

1f it gﬁ P(0) is true ~and it sTays
True..
TVM@... and

Vk € N. (P(k) -» P(k+1))
then

vVn € N. P(n)

Then i1's
always True,



Induction, Intuitively

P(0)
Vk € N. (P(k) -» P(k+1))

It's true for O.

Since it's true for O, it's true for 1.
Since it's true for 1, it's true for 2.
Since it's true for 2, it's true for 3.
Since it's true for 3, it's true for 4.
Since it's true for 4, it's true for 5.
Since it's true for 5, it's true for 6.
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Why Induction Works

P(k) - P(k +1)

P(3)




Proof by Induction

* A proof by induction is a way to use the
principle of mathematical induction to show that
some result is true for all natural numbers n.

* In a proof by induction, there are three steps:

 Prove that P(0) is true.
- This is called the basis or the base case.
 Prove that if P(k) is true, then P(k+1) is true.

- This is called the inductive step.

- The assumption that P(k) is true is called the inductive
hypothesis.

* Conclude, by induction, that P(n) is true for all n € N.



Some Sums



20

20
+ 21

20
+ 2! +
22

20
=
2
1+ 22 4
23

20
+
21
+ 22 +
23
+
24



20 = 1
204 21=1+2=3
20421 422=1+2+4=7
20 421 422423=1+2+4+8=15

20 4+ 21 422423 +21=1+2+4+8+16 =31



20 421=1+2=3=22-1
20 421 4 22=142+4=7=23-1
204214224 23=1+24+4+8=15=24-1

204+ 21+ 224+ 23+ 24=1+2+4+8+16=31=2>-1
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AT the sfart of fhe proot, we tell the
reader what predicate we'vre going 1o show
is True tor all natural numbers n, then fell
them we're going to prove it by induction,
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“If P(Kk) is true, then P(k+1) is true.”
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That P(k) is true, then try To prove P(k+1),
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A Quick Aside

* This result helps explain the range of
numbers that can be stored in an int.

* If you have an unsigned 32-bit integer,

the largest value you can store is given
byl +2+4+8+ ...+ 21 =2%2-1,

* This formula for sums of powers of two
has many other uses as well. You'll see
one on Friday.



Structuring a Proof by Induction

 Define some predicate P that you'll show, by
induction, is true for all natural numbers.

* Prove the base case:

« State that you're going to prove that P(0) is true, then go
prove it.

* Prove the inductive step:

« Say that you're assuming P(k) for some arbitrary natural
number k, then write out exactly what that means.

« Say that you're going to prove P(k+1), then write out
exactly what that means.

* Prove that P(k+1) using any proof technique you’d like!
« This is a rather verbose way of writing inductive

proofs. As we get more experience with induction,
we'll start leaving out some details from our proofs.



The Counterteit Coin Problem



Problem Statement

* You are given a set of three seemingly identical
coins, two of which are real and one of which is
counterteit.

 The counterteit coin weighs more than the rest of
the coins.

* You are given a balance. Using only one weighing
on the balance, find the counterfeit coin.

How?

Answer at
https://cs103.stanford.edu/pollev
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A Harder Problem

* You are given a set of nine seemingly
identical coins, eight of which are real
and one of which is counterteit.

 The counterfeit coin weighs more than
the rest of the coins.

* You are given a balance. Using only two
weighings on the balance, find the
counterteit coin.
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Can we generalize this?



A Pattern

 Assume out of the coins that are given, exactly
one is counterfeit and weighs more than the
other coins.

» If we have no weighings, how many coins can
we have while still being able to find the
countertfeit?

e One coin, since that coin has to be the counterfeit!

» If we have one weighing, we can find the
counterteit out of three coins.

» If we have two weighings, we can find the
counterteit out of nine coins.



So far, we have
1, 3, 9 = 39 31, 3°

Does this pattern continue?
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it's vacuously heavier than all the others, and no weighings are needed.

For the inductive step, suppose P(k) is true for some arbitrary k € N, so
we can find the heavier of 3* coins in k weighings.
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a set of 3°=1 coins with one coin heavier than the rest, we can find that
coin with zero weighings. This is true because if we have just one coin,
it's vacuously heavier than all the others, and no weighings are needed.
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we can find the heavier of 3* coins in k weighings. We'll prove P(k+1):
that we can find the heavier of 3%*! coins in k+1 weighings.

Suppose we have 3**! coins with one heavier than the others. Split the
coins into three groups of 3% coins each. Weigh two of the groups
against one another. If one group is heavier than the other, the coins in
that group must contain the heavier coin. Otherwise, the heavier coin
must be in the group we didn't put on the scale. Therefore, with one
weighing, we can find a group of 3* coins containing the heavy coin. We
can then use k more weighings to find the heavy coin in that group.
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If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

We'll use induction to prove that P(n) holds for every n € N, from which
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As our base case, we'll prove that P(0) is true, meaning that if we have
a set of 3°=1 coins with one coin heavier than the rest, we can find that
coin with zero weighings. This is true because if we have just one coin,
it's vacuously heavier than all the others, and no weighings are needed.
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it's vacuously heavier than all the others, and no weighings are needed.

For the inductive step, suppose P(k) is true for some arbitrary k € N, so
we can find the heavier of 3% coins in k weighings. We'll prove P(k+1):
that we can find the heavier of 3%*! coins in k+1 weighings.

Suppose we have 3**! coins with one heavier than the others. Split the
coins into three groups of 3% coins each. Weigh two of the groups
against one another. If one group is heavier than the other, the coins in
that group must contain the heavier coin. Otherwise, the heavier coin
must be in the group we didn't put on the scale. Therefore, with one
weighing, we can find a group of 3* coins containing the heavy coin. We
can then use k more weighings to find the heavy coin in that group.




Theorem: If exactly one coin in a group of 3" coins is heavier than the
rest, that coin can be found using only n weighings on a balance.

Proof: Let P(n) be the following statement:

If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

We'll use induction to prove that P(n) holds for every n € N, from which
the theorem follows.

As our base case, we'll prove that P(0) is true, meaning that if we have
a set of 3°=1 coins with one coin heavier than the rest, we can find that
coin with zero weighings. This is true because if we have just one coin,
it's vacuously heavier than all the others, and no weighings are needed.

For the inductive step, suppose P(k) is true for some arbitrary k € N, so
we can find the heavier of 3* coins in k weighings. We'll prove P(k+1):
that we can find the heavier of 3%*! coins in k+1 weighings.

Suppose we have 3**! coins with one heavier than the others. Split the
coins into three groups of 3% coins each. Weigh two of the groups
against one another. If one group is heavier than the other, the coins in
that group must contain the heavier coin. Otherwise, the heavier coin
must be in the group we didn't put on the scale. Therefore, with one
weighing, we can find a group of 3* coins containing the heavy coin. We
can then use k more weighings to find the heavy coin in that group.

We've given a way to use k+1 weighings and find the heavy coin out of
a group of 3%*! coins.
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For the inductive step, suppose P(k) is true for some arbitrary k € N, so
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Suppose we have 3**! coins with one heavier than the others. Split the
coins into three groups of 3% coins each. Weigh two of the groups
against one another. If one group is heavier than the other, the coins in
that group must contain the heavier coin. Otherwise, the heavier coin
must be in the group we didn't put on the scale. Therefore, with one
weighing, we can find a group of 3* coins containing the heavy coin. We
can then use k more weighings to find the heavy coin in that group.

We've given a way to use k+1 weighings and find the heavy coin out of
a group of 3¥*! coins. Thus P(k+1) is true, completing the induction.
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a group of 3¥*! coins. Thus P(k+1) is true, completing the induction.
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the theorem follows.

As our base case, we 11 prove that P(O) is true, meamng that if we have
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rest, that coin can be found using only n weighings on a balance.

Proof: Let P(n) be the following statement:

If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

We'll use induction to prove that P(n) holds for every n € N, from which
the theorem follows.

As our base case, we'll prove that P(0) is true, meaning that if we have
a set of 3°=1 coins with one coin heavier than the rest, we can find that
coin with zero weighings. This is true because if we have just one coin,
it's vacuously heavier than all the others, and no weighings are needed.

For the inductive step, suppose P(k) is true for some arbitrary k € N, so
we can find the heavier of 3* coins in k weighings. We'll prove P(k+1):
that we can find the heavier of 3%*! coins in k+1 weighings.

Suppose we have 3**! coins with one heavier than the others. Split the
coins into three groups of 3% coins each. Weigh two of the groups
against one another. If one group is heavier than the other, the coins in
that group must contain the heavier coin. Otherwise, the heavier coin
must be in the group we didn't put on the scale. Therefore, with one
weighing, we can find a group of 3* coins containing the heavy coin. We
can then use k more weighings to find the heavy coin in that group.

We've given a way to use k+1 weighings and find the heavy coin out of
a group of 3¥*! coins. Thus P(k+1) is true, completing the induction. B




Some Fun Problems

 Here's some nifty variants of this problem that you can
work through:

Suppose that you have a group of coins where there's either
exactly one heavier coin, or all coins weigh the same amount.
If you only get k weighings, what's the largest number of coins
where you can find the counterfeit or determine none exists?

What happens if the counterfeit can be either heavier or
lighter than the other coins? What's the maximum number of
coins where you can find the counterfeit if you have k
weighings?

Can you find the counterfeit out of a group of more than 3*
coins with k weighings?

Can you find the counterfeit out of any group of at most 3%
coins with k weighings?



From Cynthia’s Slide Deck

* See today’s lecture video for two additional
examples not included in this slide deck:

 “Something’s Wrong” - An example of how
induction can be used to “prove” things that
are untrue if we’re not caretful to include all
required components (the base case and the
inductive step).

 “The MU Puzzle” - Another example of an
inductive proof revolving around string
mutation operations.

« Comments about proofs on algorithms.



Generalizing Induction

« When doing a proof by induction,

» feel free to use multiple base cases [see appendix!], and
» feel free to take steps of sizes other than one.

 If you do, make sure that...

... you actually need all your base cases. Avoid redundant
base cases that are already covered by a mix of other base
cases and your inductive step.

* ... you cover all the numbers you need to cover. Trace out
your reasoning and make sure all the numbers you need
to cover really are covered.

» As with a proof by cases, you don’t need to
separately prove you’ve covered all the options. We
trust you.



Next Time

 “Build Up” vs “Build Down”

* A subtle but key point in induction proofs.
« Complete Induction

« Expanding our inductive hypothesis.



Appendix

Variations on Induction



Subdividing a Square
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Subdividing a Square

These regions
aren’T squares,




Subdividing a Square

Squares can’t
overlap or hang
ott the figure,




For what values of n can a square be
subdivided into n squares?

Try out some numbers n from
1 to 12. Which values of n work?

Answer at
hittps://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev
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Theorem: For any n = 6, there is a way to subdivide a square into
n smaller squares.
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As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares.
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Proof: Let P(n) be the statement “there is a way to subdivide a
square into n smaller squares.” We will prove by induction that

P(n) holds for all n = 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares. This is shown here:

2 2
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6[7] , 4

6(5|4 514 8[7[6[5




Theorem: For any n = 6, there is a way to subdivide a square into
n smaller squares.

Proof: Let P(n) be the statement “there is a way to subdivide a
square into n smaller squares.” We will prove by induction that
P(n) holds for all n = 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares. This is shown here:

2 2
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0|7 3 4
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For the inductive step, assume that for some arbitrary k = 6
that P(k) is true and that there is a way to subdivide a square
into k squares.
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For the inductive step, assume that for some arbitrary k = 6
that P(k) is true and that there is a way to subdivide a square
into k squares. We prove P(k+3), that there is a way to
subdivide a square into k+3 squares.
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obtaining (via the inductive hypothesis) a subdivision of a
square into k squares.
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it into four equal squares.



Theorem: For any n = 6, there is a way to subdivide a square into
n smaller squares.

Proof: Let P(n) be the statement “there is a way to subdivide a
square into n smaller squares.” We will prove by induction that
P(n) holds for all n = 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares. This is shown here:

2 2

1 = 1|2 1 3
6[7] , 4

6(5|4 514 8[7[6[5

For the inductive step, assume that for some arbitrary k = 6
that P(k) is true and that there is a way to subdivide a square
into k squares. We prove P(k+3), that there is a way to
subdivide a square into k+3 squares. To see this, start by
obtaining (via the inductive hypothesis) a subdivision of a
square into k squares. Then, choose any of the squares and split
it into four equal squares. This removes one of the k squares
and adds four more, so there will be a net total of k+3 squares.



Theorem: For any n = 6, there is a way to subdivide a square into
n smaller squares.

Proof: Let P(n) be the statement “there is a way to subdivide a
square into n smaller squares.” We will prove by induction that
P(n) holds for all n = 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares. This is shown here:

2 2

1 = 1|2 1 3
6[7] , 4

6(5|4 514 8[7[6[5

For the inductive step, assume that for some arbitrary k = 6
that P(k) is true and that there is a way to subdivide a square
into k squares. We prove P(k+3), that there is a way to
subdivide a square into k+3 squares. To see this, start by
obtaining (via the inductive hypothesis) a subdivision of a
square into k squares. Then, choose any of the squares and split
it into four equal squares. This removes one of the k squares
and adds four more, so there will be a net total of k+3 squares.
Thus P(k+3) holds, completing the induction.



Theorem: For any n = 6, there is a way to subdivide a square into
n smaller squares.

Proof: Let P(n) be the statement “there is a way to subdivide a
square into n smaller squares.” We will prove by induction that
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For the inductive step, assume that for some arbitrary k = 6
that P(k) is true and that there is a way to subdivide a square
into k squares. We prove P(k+3), that there is a way to
subdivide a square into k+3 squares. To see this, start by
obtaining (via the inductive hypothesis) a subdivision of a
square into k squares. Then, choose any of the squares and split
it into four equal squares. This removes one of the k squares
and adds four more, so there will be a net total of k+3 squares.
Thus P(k+3) holds, completing the induction. W




More on Square Subdivisions

 There are a ton of interesting questions

that come up when trying to subdivide a
rectangle or square into smaller squares.

» In fact, one of the major players in early
graph theory (William Tutte) got his start
playing around with these problems.

* Good starting resource: this Numberphile
video on


https://www.youtube.com/watch?v=NoRjwZomUK0&feature=youtu.be
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